Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 12(6)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37371995

ABSTRACT

The use of trace elements in agriculture as a complement to crop fertilization programs is a practice that is gaining importance and relevance worldwide. Iodine and selenium perform essential functions in human health, related to the proper functioning of the thyroid gland, acting as antioxidants and antiproliferatives, and their limited intake through food consumption can cause malnutrition, reflected in the abnormal development and growth of humans. This research aimed to evaluate the nutraceutical quality of tomato (Solanum lycopersicum L.) in response to seed priming based on KIO3 (0, 100, 150, 200, 250 mg L-1) and Na2SeO3 (0, 0.5, 1, 2, 3 mg L-1), performed by interaction from a 52-factorial design and by independent factors in a 24-h imbibition time. The tomato crop was established under greenhouse conditions in 10-L polyethylene containers containing peat moss and perlite 1:1 (v/v). Regarding non-enzymatic antioxidant compounds, lycopene, ß-carotene and flavonoid contents in tomato fruits significantly increased with KIO3 and Na2SeO3 treatments; however, vitamin C content was negatively affected. KIO3 increased the phenol and chlorophyll-a contents of leaves. In relation to enzymatic activity, KIO3 positively influenced GSH content and PAL activity in tomato fruits. KIO3 also positively influenced GSH content in leaves while negatively affecting PAL and APX activities. Na2SeO3 favored GSH content and GPX activity in tomato fruits and leaves. Na2SeO3 negatively affected the antioxidant capacity of hydrophilic compounds by ABTS in fruits and leaves and favored hydrophilic compounds by DPPH in leaves. Seed imbibition based on KIO3 and Na2SeO3 is a method that is implemented in the tomato crop and presents interesting aspects that favor the nutraceutical quality of tomato fruits, which may contribute to increasing the intake of these minerals in humans through tomato consumption.

2.
Heliyon ; 9(1): e12787, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36647345

ABSTRACT

Zn is an indispensable nutrient for crops that usually presents low bioavailability. Different techniques have been proposed to improve the bioavailability of Zn, including the use of nanofertilizers. The objective of the study was to evaluate the applications of drench (D) and foliar (F) ZnO nanoparticles (NZnO) compared to those of ionic Zn2+ (ZnSO4) in lettuce. The plants cv. Great Lakes 407 was produced in pots of 4 L with perlite-peat moss (1:1) under greenhouse conditions. The treatments consisted of NZnO applications that replaced the total Zn provided with a Steiner solution, as follows: Zn2+ (100%D) (control); Zn2+ (50%D+50%F); NZnO (100%D); NZnO (50%D+50%F); NZnO (75%D); NZnO (50%D); NZnO (75%F) and NZnO (50%F). Four applications of Zn were made with a frequency of 15 days. 75 days after transplant (DAP), the fresh and dry biomass, chlorophyll a, b, and ß-carotene, phenolics, flavonoids, antioxidant capacity, vitamin C, glutathione, H2O2, total protein, and enzymatic activity of PAL, CAT, APX, and GPX were evaluated. The mineral concentrations (N, P, K, Ca, Mg, S, Cu, Fe, Mn, Mo, Zn, Ni, and Si) in the leaves and roots of plants were also determined. The results showed that, compared to Zn2+, NZnO promoted increases in biomass (14-52%), chlorophylls (32-69%), and antioxidant compounds such as phenolics, flavonoids, and vitamin C. The activity of enzymes like CAT and APX, as well as the foliar concentration of Ca, Mg, S, Fe, Mn, Zn, and Si increased with NZnO. A better response was found in the plants for most variables with foliar applications of NZnO equivalent to 50-75% of the total Zn2+ applied conventionally. These results demonstrate that total replacement of Zn2+ with NZnO is possible, promoting fertilizer efficiency and the nutraceutical quality of lettuce.

3.
Plants (Basel) ; 11(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36559576

ABSTRACT

The objective of this review is to present a compilation of the application of various biostimulants in strawberry plants. Strawberry cultivation is of great importance worldwide, and, there is currently no review on this topic in the literature. Plant biostimulation consists of using or applying physical, chemical, or biological stimuli that trigger a response-called induction or elicitation-with a positive effect on crop growth, development, and quality. Biostimulation provides tolerance to biotic and abiotic stress, and more absorption and accumulation of nutrients, favoring the metabolism of the plants. The strawberry is a highly appreciated fruit for its high organoleptic and nutraceutical qualities since it is rich in phenolic compounds, vitamins, and minerals, in addition to being a product with high commercial value. This review aims to present an overview of the information on using different biostimulation techniques in strawberries. The information obtained from publications from 2000-2022 is organized according to the biostimulant's physical, chemical, or biological nature. The biochemical or physiological impact on plant productivity, yield, fruit quality, and postharvest life is described for each class of biostimulant. Information gaps are also pointed out, highlighting the topics in which more significant research effort is necessary.

4.
Plants (Basel) ; 11(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432908

ABSTRACT

Currently, the use of biostimulants in agriculture is a tool for mitigating certain environmental stresses. Brown algae extracts have become one of the most important categories of biostimulants in agriculture, and are derived from the different uses and positive results obtained under optimal and stressful conditions. This study aimed to examine the efficacy of a foliar application of a hydroalcoholic extract of Sargassum spp. and two controls (a commercial product based on Ascophyllum nodosum and distilled water) with regard to growth, the antioxidant system, and the expression of defense genes in tomato seedlings grown in nonsaline (0 mM NaCl) and saline (100 mM NaCl) conditions. In general, the results show that the Sargassum extract increased the growth of the seedlings at the end of the experiment (7.80%) compared to the control; however, under saline conditions, it did not modify the growth. The Sargassum extract increased the diameter of the stem at the end of the experiment in unstressed conditions by 14.85% compared to its control and in stressful conditions by 16.04% compared to its control. Regarding the accumulation of total fresh biomass under unstressed conditions, the Sargassum extract increased it by 19.25% compared to its control, and the accumulation of total dry biomass increased it by 18.11% compared to its control. Under saline conditions, the total of fresh and dry biomass did not change. Enzymatic and nonenzymatic antioxidants increased with NaCl stress and the application of algal products (Sargassum and A. nodosum), which was positively related to the expression of the defense genes evaluated. Our results indicate that the use of the hydroalcoholic extract of Sargassum spp. modulated different physiological, metabolic, and molecular processes in tomato seedlings, with possible synergistic effects that increased tolerance to salinity.

5.
Plants (Basel) ; 10(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34834701

ABSTRACT

The production of ornamentals is an economic activity of great interest, particularly the production of Lilium. This plant is very attractive for its color and shapes; however, the quality of its flower and its shelf life can decrease very fast. Therefore, it is of the utmost importance to develop techniques that allow for increasing both flower quality and shelf life. Nanotechnology has allowed for the use of various materials with unique characteristics. These materials can induce a series of positive responses in plants, among which the production of antioxidant compounds stands out. The objective of this study was to determine the impact of the application of silicone nanoparticles (SiO2 NPs) on the quality, shelf life, and antioxidant status of Lilium. For this, different concentrations of SiO2 NPs (0, 200, 400, 600, 800, and 1000 mg L-1) were applied in two ways, foliar and soil, as two independent experiments. The contents of enzymatic (superoxide dismutase, glutathione peroxidase, catalase, ascorbate peroxidase, and phenylalanine ammonia lyase) and non-enzymatic (phenols, flavonoids, and glutathione) antioxidant compounds, the mineral content, flower quality, and shelf life were analyzed. The results showed that the application of SiO2 NPs through the foliar method induced a greater flowers' shelf life (up to 21.62% more than the control); greater contents of Mg, P, and S (up to 25.6%, 69.1%, and 113.9%, respectively, compared to the control); more photosynthetic pigment (up to 65.17% of total chlorophyll); more glutathione peroxidase activity (up to 69.9%); more phenols (up to 25.93%); and greater antioxidant capacity as evaluated by the DPPH method (up to 5.18%). The use of SiO2 NPs in the production of Lilium is a good alternative method to increase flower quality and shelf life.

6.
Front Genet ; 12: 583888, 2021.
Article in English | MEDLINE | ID: mdl-33613631

ABSTRACT

Plant biostimulants are compounds, living microorganisms, or their constituent parts that alter plant development programs. The impact of biostimulants is manifested in several ways: via morphological, physiological, biochemical, epigenomic, proteomic, and transcriptomic changes. For each of these, a response and alteration occur, and these alterations in turn improve metabolic and adaptive performance in the environment. Many studies have been conducted on the effects of different biotic and abiotic stimulants on plants, including many crop species. However, as far as we know, there are no reviews available that describe the impact of biostimulants for a specific field such as transcriptomics, which is the objective of this review. For the commercial registration process of products for agricultural use, it is necessary to distinguish the specific impact of biostimulants from that of other legal categories of products used in agriculture, such as fertilizers and plant hormones. For the chemical or biological classification of biostimulants, the classification is seen as a complex issue, given the great diversity of compounds and organisms that cause biostimulation. However, with an approach focused on the impact on a particular field such as transcriptomics, it is perhaps possible to obtain a criterion that allows biostimulants to be grouped considering their effects on living systems, as well as the overlap of the impact on metabolism, physiology, and morphology occurring between fertilizers, hormones, and biostimulants.

7.
Foods ; 8(12)2019 Nov 23.
Article in English | MEDLINE | ID: mdl-31771217

ABSTRACT

Tomato fruit is rich in antioxidant compounds such as lycopene and ß-carotene. The beneficial effects of the bioactive compounds of tomato fruit have been documented as anticancer activities. The objective of this research was to determine whether arsenic (As) causes changes in the content of antioxidant compounds in tomato fruits and whether Silicon nanoparticles (SiO2 NPs) positively influence them. The effects on fruit quality and non-enzymatic antioxidant compounds were determined. The results showed that As decreased the oxide-reduction potential (ORP), while lycopene and ß-carotene were increased by exposure to As at a low dose (0.2 mg L-1), and proteins and vitamin C decreased due to high doses of As in the interaction with SiO2 NPs. A dose of 250 mg L-1 of SiO2 NPs increased glutathione and hydrogen peroxide (H2O2), and phenols decreased with low doses of As and when they interacted with the NPs. As for the flavonoids, they increased with exposure to As and SiO2 NPs. The total antioxidant capacity, determined by the ABTS (2,2´-azino-bis[3-ethylbenzthiazolin-6-sulfonic acid]) test, showed an increase with the highest dose of As in the interaction with SiO2 NPs. The application of As at low doses induced a greater accumulation of bioactive compounds in tomato fruit; however, these compounds decreased in high doses as well as via interaction with SiO2 NPs, indicating that there was an oxidative burst.

8.
Int J Mol Sci ; 20(23)2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31766644

ABSTRACT

Tomato is one of the most economically important vegetables worldwide and is constantly threatened by various biotic and abiotic stress factors reducing the quality and quantity in the production of this crop. As an alternative to mitigate stress in plants, carbon nanomaterials (CNMs) have been used in agricultural areas. Therefore, the objective of the present work was to evaluate the antioxidant responses of tomato seedlings to the application via foliar and drench of carbon nanotubes (CNTs) and graphene (GP). Different doses (10, 50, 100, 250, 500, and 1000 mg L-1) and a control were evaluated. The results showed that the fresh and dry root weight increased with the application of CNMs. Regarding the antioxidant responses of tomato seedlings, the application of CNMs increased the content of phenols, flavonoids, ascorbic acid, glutathione, photosynthetic pigments, activity of the enzyme's ascorbate peroxidase, glutathione peroxidase, catalase, and phenylalanine ammonia lyase as well as the content of proteins. Therefore, the use of carbon-based nanomaterials could be a good alternative to induce tolerance to different stress in tomato crop.


Subject(s)
Antioxidants/metabolism , Graphite , Nanotubes, Carbon/chemistry , Seedlings/metabolism , Solanum lycopersicum/metabolism , Stress, Physiological/drug effects , Dose-Response Relationship, Drug , Graphite/chemistry , Graphite/pharmacology
9.
Molecules ; 24(12)2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31248198

ABSTRACT

Sulfur is an essential element in determining the productivity and quality of agricultural products. It is also an element associated with tolerance to biotic and abiotic stress in plants. In agricultural practice, sulfur has broad use in the form of sulfate fertilizers and, to a lesser extent, as sulfite biostimulants. When used in the form of bulk elemental sulfur, or micro- or nano-sulfur, applied both to the soil and to the canopy, the element undergoes a series of changes in its oxidation state, produced by various intermediaries that apparently act as biostimulants and promoters of stress tolerance. The final result is sulfate S+6, which is the source of sulfur that all soil organisms assimilate and that plants absorb by their root cells. The changes in the oxidation states of sulfur S0 to S+6 depend on the action of specific groups of edaphic bacteria. In plant cells, S+6 sulfate is reduced to S-2 and incorporated into biological molecules. S-2 is also absorbed by stomata from H2S, COS, and other atmospheric sources. S-2 is the precursor of inorganic polysulfides, organic polysulfanes, and H2S, the action of which has been described in cell signaling and biostimulation in plants. S-2 is also the basis of essential biological molecules in signaling, metabolism, and stress tolerance, such as reactive sulfur species (RSS), SAM, glutathione, and phytochelatins. The present review describes the dynamics of sulfur in soil and plants, considering elemental sulfur as the starting point, and, as a final point, the sulfur accumulated as S-2 in biological structures. The factors that modify the behavior of the different components of the sulfur cycle in the soil-plant-atmosphere system, and how these influences the productivity, quality, and stress tolerance of crops, are described. The internal and external factors that influence the cellular production of S-2 and polysulfides vs. other S species are also described. The impact of elemental sulfur is compared with that of sulfates, in the context of proper soil management. The conclusion is that the use of elemental sulfur is recommended over that of sulfates, since it is beneficial for the soil microbiome, for productivity and nutritional quality of crops, and also allows the increased tolerance of plants to environmental stresses.


Subject(s)
Crops, Agricultural/chemistry , Crops, Agricultural/metabolism , Hydrogen Sulfide/chemistry , Plants/chemistry , Plants/metabolism , Soil/chemistry , Sulfur/chemistry , Adaptation, Biological , Biotransformation , Hydrogen Sulfide/analysis , Hydrogen Sulfide/metabolism , Metabolic Networks and Pathways , Nutritive Value , Oxidation-Reduction , Sulfur/analysis , Sulfur/metabolism
10.
Int J Mol Sci ; 20(1)2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30621162

ABSTRACT

Biostimulants are materials that when applied in small amounts are capable of promoting plant growth. Nanoparticles (NPs) and nanomaterials (NMs) can be considered as biostimulants since, in specific ranges of concentration, generally in small levels, they increase plant growth. Pristine NPs and NMs have a high density of surface charges capable of unspecific interactions with the surface charges of the cell walls and membranes of plant cells. In the same way, functionalized NPs and NMs, and the NPs and NMs with a corona formed after the exposition to natural fluids such as water, soil solution, or the interior of organisms, present a high density of surface charges that interact with specific charged groups in cell surfaces. The magnitude of the interaction will depend on the materials adhered to the corona, but high-density charges located in a small volume cause an intense interaction capable of disturbing the density of surface charges of cell walls and membranes. The electrostatic disturbance can have an impact on the electrical potentials of the outer and inner surfaces, as well as on the transmembrane electrical potential, modifying the activity of the integral proteins of the membranes. The extension of the cellular response can range from biostimulation to cell death and will depend on the concentration, size, and the characteristics of the corona.


Subject(s)
Nanoparticles , Nanostructures , Plants/metabolism , Acid-Base Equilibrium , Copper/metabolism , Hydrogen-Ion Concentration , Intracellular Membranes/metabolism , Osmolar Concentration , Oxidation-Reduction , Protein Corona/metabolism , Static Electricity , Titanium/metabolism
11.
Front Plant Sci ; 9: 647, 2018.
Article in English | MEDLINE | ID: mdl-29868098

ABSTRACT

Silicon is an essential nutrient for humans, additionally is beneficial for terrestrial plants. In plants Si enhances tolerance to different types of stress; in humans, it improves the metabolism and increases the strength of skeletal and connective tissues as well as of the immune system. Most of the Si intake of humans come from edible plants creating a double benefit: first, because the absorption of Si increases the antioxidants and other phytochemicals in plants, thereby increasing its functional value, and second because the higher concentration of Si in plants increases intake in human consumers. Therefore, it is desirable to raise the availability of Si in the human diet through the agronomic management of Si accumulator species, such as corn, wheat, rice, soybeans, and beans. But also in such species as tomatoes, carrots, and other vegetables, whose per capita consumption has increased. However, there are few systematized recommendations for the application and management of Si fertilizers based on the physicochemical factors that determine their availability, absorption, transport, and deposition in cells and tissues. This study presents updated information about edaphic and plant factors, which determine the absorption, transport, and deposition rates in edible organs. The information was integrated into an estimated dynamic model that approximates the processes previously mentioned in a model that represents a tomato crop in soil and soilless conditions. In the model, on the other hand, was integrated the available information about key environmental factors related to Si absorption and mobilization, such as the temperature, pH, and soil organic matter. The output data of the model were compared against information collected in the literature, finding an adequate adjustment. The use of the model for educational or technical purposes, including the possibility of extending it to other horticultural crops, can increase the understanding of the agronomic management of Si in plants.

12.
Molecules ; 23(1)2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29337864

ABSTRACT

Chitosan is a natural polymer, which has been used in agriculture to stimulate crop growth. Furthermore, it has been used for the encapsulation of nanoparticles in order to obtain controlled release. In this work, the effect of chitosan-PVA and Cu nanoparticles (Cu NPs) absorbed on chitosan-PVA on growth, antioxidant capacity, mineral content, and saline stress in tomato plants was evaluated. The results show that treatments with chitosan-PVA increased tomato growth. Furthermore, chitosan-PVA increased the content of chlorophylls a and b, total chlorophylls, carotenoids, and superoxide dismutase. When chitosan-PVA was mixed with Cu NPs, the mechanism of enzymatic defense of tomato plants was activated. The chitosan-PVA and chitosan-PVA + Cu NPs increased the content of vitamin C and lycopene, respectively. The application of chitosan-PVA and Cu NPs might induce mechanisms of tolerance to salinity.


Subject(s)
Antioxidants/metabolism , Chitosan/chemistry , Copper/chemistry , Metal Nanoparticles , Salinity , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Stress, Physiological , Chlorophyll/metabolism , Fruit/growth & development , Fruit/metabolism , Minerals/metabolism , Phytochemicals/chemistry , Pigments, Biological , Plant Leaves , Reactive Oxygen Species
13.
Molecules ; 22(4)2017 Mar 30.
Article in English | MEDLINE | ID: mdl-28358332

ABSTRACT

Selenium is an element that must be considered in the nutrition of certain crops since its use allows the obtaining of biofortified crops with a positive impact on human health. The objective of this review is to present the information on the use of Se and S in the cultivation of plants of the genus Allium. The main proposal is to use Allium as specialist plants for biofortification with Se and S, considering the natural ability to accumulate both elements in different phytochemicals, which promotes the functional value of Allium. In spite of this, in the agricultural production of these species, the addition of sulfur is not realized to obtain functional foods and plants more resistant; it is only sought to cover the necessary requirements for growth. On the other hand, selenium does not appear in the agronomic management plans of most of the producers. Including S and Se fertilization as part of agronomic management can substantially improve Allium crop production. Allium species may be suitable to carry out biofortification with Se; this practice can be combined with the intensive use of S to obtain crops with higher production and sensory, nutritional, and functional quality.


Subject(s)
Allium/growth & development , Biofortification , Selenium , Sulfur , Allium/drug effects , Crops, Agricultural/drug effects , Crops, Agricultural/growth & development , Fertilizers
14.
Front Plant Sci ; 7: 1146, 2016.
Article in English | MEDLINE | ID: mdl-27602033

ABSTRACT

Iodine is not considered essential for land plants; however, in some aquatic plants, iodine plays a critical role in antioxidant metabolism. In humans, iodine is essential for the metabolism of the thyroid and for the development of cognitive abilities, and it is associated with lower risks of developing certain types of cancer. Therefore, great efforts are made to ensure the proper intake of iodine to the population, for example, the iodization of table salt. In the same way, as an alternative, the use of different iodine fertilization techniques to biofortify crops is considered an adequate iodine supply method. Hence, biofortification with iodine is an active area of research, with highly relevant results. The agricultural application of iodine to enhance growth, environmental adaptation, and stress tolerance in plants has not been well explored, although it may lead to the increased use of this element in agricultural practice and thus contribute to the biofortification of crops. This review systematically presents the results published on the application of iodine in agriculture, considering different environmental conditions and farming systems in various species and varying concentrations of the element, its chemical forms, and its application method. Some studies report beneficial effects of iodine, including better growth, and changes in the tolerance to stress and antioxidant capacity, while other studies report that the applications of iodine cause no response or even have adverse effects. We suggested different assumptions that attempt to explain these conflicting results, considering the possible interaction of iodine with other trace elements, as well as the different physicochemical and biogeochemical conditions that give rise to the distinct availability and the volatilization of the element.

SELECTION OF CITATIONS
SEARCH DETAIL
...